个人简介
陈俊龙(C. L. Philip Chen)
华南理工大学计算机科学与工程学院院长
欧洲科学院外籍院士,欧洲科学与艺术学院院士
国家重大人才工程引进教授人工智能与数字经济广东省实验室(广州) 副主任
陈俊龙(C. L. Philip Chen),华南理工大学计算机科学与工程学院院长,欧洲科学院外籍院士,欧洲科学与艺术学院院士,中国自动化学会副理事长,国家重大人才工程引进教授。陈教授曾任澳门大学科技学院院长,美国德州大学工学院终身教授、副院长和电机及计算机系主任。陈教授是IEEE Fellow,美国科学促进会AAAS Fellow,国际模式识别学会IAPR Fellow,香港工程师学会 Fellow,我国自动化学会的Fellow及常务理事。
陈俊龙教授曾任IEEE Transactions on Cybernetics期刊和 IEEE Systems, Man, and Cybernetics: Systems期刊主编及IEEE Systems, Man, and Cybernetic Society学会国际总主席(President,2012-2013)。陈教授在国际重要学术刊物上发表论文1000余篇,其中IEEE Transactions文章600余篇,多次获得最佳论文奖项。目前,谷歌学术引用6万余次, Web of Science引用55000余次。目前,同时有54篇文章被列在Web of Science 1% 的高引用,其中4篇在0.1%的热点引用、获4项美国专利及出版学术专著1部。陈教授在控制论、智能系统与控制、计算智能、数据科学的科研方向都有非常杰出的贡献。陈教授获IEEE学会颁发了5次杰出贡献奖,是我国计算机科学学科教指委委员和美国工学技术教育认证会(ABET)的评审委员。澳门大学获得工程学科及计算机工程的完成国际认证是陈教授对澳门工程教育的至高贡献。2016年他获得了母校—美国普度大学的杰出电机及计算机工程奖(Outstanding Electrical and Computer Engineering Award)。2018年获 IEEE系统人机控制论的最高学术奖--IEEE 诺伯特·维纳奖(Norbert Wiener Award);2018年到2023年连续六年获得科睿唯安(Clarivate Analytics)全球高被引科学家的称号。2021年,荣获IEEE Joseph G. Wohl终身成就奖(IEEE Joseph G. Wohl Outstanding Career Award)和2021年度吴文俊人工智能杰出贡献奖。在斯坦福大学发布的全球前2%顶尖科学家榜单(共20万名),入选在“终身科学影响力排行榜(1960-2021)”和“2021年度科学影响力排行榜(全球前1900名)”两个榜单。在“2022年度科学影响力排行榜名列全球前1123名。
研究领域
控制论、智能系统与控制、计算智能、数据科学、大模型、情感计算
教育经历
1975.09-1979.07 中国 台北科技大学 电机工程 本科
1983.09-1985.12 美国 密歇根大学 电机和计算机工程 硕士研究生
1985.12-1988.12 美国 普渡大学 电机和计算机工程 博士研究生
工作经历
1988.08-1989.08 美国 印第安纳大学-普度大学 访问助理教授
1989.09-1995.08 美国 俄亥俄州莱特州立大学 助理教授
1995.09-1999.08 美国 俄亥俄州莱特州立大学 副教授
1999.09-2002.08 美国 俄亥俄州莱特州立大学 教授
2002.09-2009.12 美国 德州大学 教授
2005.09-2007.12 美国 德州大学 副院长 教授
2007.12-2009.12 美国 德州大学 系主任 教授
2010.01-2017.12 中国 澳门大学 科技学院院长 教授
2018.01-2019.02 中国 澳门大学 教授
2019.03-至今 中国 华南理工大学 计算机学院院长 教授
科研项目情况
- 教授国家重点研发计划, PI, 2019YFB1703600,柔性系统非确定性制造大数据理论与方法研究,RMB 452万元,2019/12-2022/11。
- 广东省重点领域研发计划项目,“大规模高效能神经网络模型与算法研究及应用”,2023B0303030001,2023/12-2026/11,500万
- “珠江人才计划”引进创新创业团队,PI,2019ZT08X214,计算脑科学与情感智能团队, 1000万,2020/12-2025/12。
- 广州市科技计划项目,PI, 202007030006,类脑感知与认知基础理论算法与应用研究,RMB 1000万元,2020/04- 2023/03。
- 国家基金委重点项目,PI,U1813203, 动态环境中的新型人体动作识别理论与方法研究, RMB 294万,Jan 2019 – Dec 2022.
- 国家基金委重点项目,PI,61751202,开放环境中不确定条件下的新型智能感知与行为理解方法研究, RMB 220万,Jan 2018 – Dec 2020.
- 国家自然科学基金重大研究计划项目,工业互联网多源异构数据可信共享与按需服务的理论与关键技术,92267203,2023/01-2025/12,260万(课题63.2万),课题负责人
- 广东省级科技计划项目-国际合作项目,面向城市级物联感知大数据融合和端云智能协同平台构建及示范应用,2022/09-2024/08,100万(课题20万),课题负责人
- Macau Science and Technology Development Fund (FDCT), PI, 079/2017/A2, “Design of Discriminative Fuzzy Restricted Boltzmann Machines and their Applications”, MOP 1,610,000, Jan 2018 – Dec 2020.
- Macau Science and Technology Development Fund (FDCT/MOST, FDCT/科技部联合项目), PI, 024/2015/AMJ, “Research on automatic multi-currency banknotes conversion technology and equ development”, 2017 – 2019.
- NSFC面上基金,PI,61572540,新型进化计算与深度学习方法在疾病预防与控制,RMB 65万 Jan 2016 – Dec 2019.
Macau Science and Technology Development Fund (FDCT), PI, 019/2015/A, “New Deep Learning Techniques for Pattern Learning and Recognition” MOP 2,062,800, Jan 2016 – Dec 2018.
- Macau Science and Technology Development Fund (FDCT), PI, 164/2014/SB/4052, “Exoskeleton Robotics – Wearable Devices and Biosignal acquisition and analysis systems,” MOP 1,718,650, Jan 2016-Dec 2016.
- acau Science and Technology Development Fund (FDCT), PI, “Novel Wireless Positioning Technology for Weak Signal Condition in Assisted Global Positioning Systems”, $2,548,900 MOP, Oct, 2010 – Oct 2013.
论文论著
- S. Sui, C. L. P. Chen(*) and S. Tong, "Fuzzy Adaptive Finite-Time Control Design for Nontriangular Stochastic Nonlinear Systems," in IEEE Transactions on Fuzzy Systems, vol. 27, no. 1, pp. 172-184, Jan. 2019. (通讯作者)
- Shuang Feng and C. L. Philip Chen*; "A Fuzzy Deep Model Based on Fuzzy Restricted Boltzmann Machines for High-dimensional Data Classification," IEEE Transactions on Fuzzy Systems, 2019, 337:274-286. (通讯作者)
- D. Yu and C. L. Philip Chen*, "Automatic leader-follower persistent formation generation with minimum agent-movement in various switching topologies," IEEE Transactions on Cybernetics, pp. 1–13, 2018 .(通讯作者)
- Shuang Feng and C. L. Philip Chen*. "Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification," IEEE Transactions on Cybernetics,50(2), pp. 414-424, Aug. 2018.(通讯作者)
- C. L. Philip Chen and Shuang Feng. "Generative and discriminative fuzzy restricted boltzmann machine learning for text and image classification," IEEE Transactions on Cybernetics, vol. PP, pp. 1-12, Oct. 2018.(第一作者)
- S. Feng and C. L. P. Chen(*) , "A Fuzzy Restricted Boltzmann Machine: Novel Learning Algorithms Based on the Crisp Possibilistic Mean Value of Fuzzy Numbers," in IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 117-130, Feb. 2018.(通讯作者)
- C. L. P. Chen and Zhulin Liu, "Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 1, pp. 10-24, Jan. 2018.(第一作者)
- C. L. Philip Chen, T. Zhang, L. Chen, and S. K. Tam, "I-Ching Divination Evolutionary Algorithm and its Convergence Analysis,"IEEE Transactions On Cybernetics,Volume: 47, Issue: 1, Pages: 2-13, Published: Jan 2017.(第一作者)
- Tong Zhang, C. L. P. Chen, L*. Chen, X. Xu and B. Hu, "Design of Highly Nonlinear Substitution Boxes Based on I-Ching Operators," IEEE Transactions on Cybernetics, Regular paper, vol. 48, no. 12, pp. 3349-3358, Dec. 2018. (通讯作者)
- Z. Liu, C. L. P. Chen*, S. Feng, Q. Feng and T. Zhang, "Stacked Broad Learning System: From Incremental Flatted Structure to Deep Model," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 209-222, Jan. 2021. (通讯作者)
- C. L. Philip Chen, Chang-E Ren, and Tao Du, "Fuzzy Observed-Based Adaptive Consensus Tracking Control for Second-Order Multiagent Systems with Heterogeneous Nonlinear Dynamics,"IEEE Transactions on Fuzzy Systems, Volume: 24, Issue: 4, Pages: 906-915, Published: Aug, 2016.(第一作者)
- C. L. P. Chen, G.X. Wen, Y. J. Liu, and Z. Liu, "Observer-Based Adaptive Backstepping Consensus Tracking Control for High-Order Nonlinear Semi-Strict-Feedback Multiagent Systems,"IEEE Trans. on Cybernetics Vol. 46, Issue 7, pp. 1591-1601, July 2016.(第一作者)
- C. L. Philip Chen, Chun-Yang Zhang, Long Chen, and Min Gan, "Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning,"IEEE Transactions on Fuzzy Systems, Volume: 23, Issue: 6, Pages: 2163-2173, DEC 2015.(第一作者)
- C. L. Philip Chen, Licheng Liu, Long Chen, Y. Y. Tang, and Yicong Zhou, "Weighted Couple Sparse Representation with Classified Regularization for Impulse Noise Removal,"IEEE Transactions on Image Processing, Vol. 24, No. 11, pp. 4014-4026, Nov. 2015.(第一作者)
- C. L. Philip Chen and C. Y. Zhang, "Data-Intensive Applications, Challenges, Techniques and Technologies: A Survey on Big Data," Information Sciences, Vol. 275, pp. 314–347, August 2014.(第一作者)
- C. L. Philip Chen, J. Wang, CH. Wang, and L. Chen, "A New Learning Algorithm for a Fully Connected Fuzzy Inference System (F-CONFIS),"IEEE Trans on Neural Networks and Learning Systems, Vol. 25, Issue 10, pp. 1741-1757, Oct, 2014.(第一作者)
- C. L. Philip Chen, G. X. Wen, Y. J. Liu, and F.Y. Wang, "Adaptive Consensus Control for a Class of Nonlinear Multi-agent Time-delay Systems using Neural Networks,"IEEE Trans. On Neural Networks and Learning Systems, Vol. 25, No. 6, pp. 1217-1226, June 2014.(第一作者)
- C. L. Philip Chen, H. Li, YT Wei, T. Xia, and Y. Y. Tang, "A Local Contrast Method for Small Infrared Target Detection,"IEEE Trans. on Geoscience and Remote Sensing, Vol. 52, No. 1, pp. 574-581, Jan. 2014.(第一作者)
- C. L. Philip Chen, Yan-Jun Liu, and GX Wen, "Fuzzy Neural Network-Based Adaptive Control for a Class of Uncertain Stochastic Systems,"IEEE Trans. On Cybernetics, Vol. 44, No. 5, pp. 583-593, May 2014.(第一作者)
- C. L. Philip Chen, Mei-Ching Chen, S. Agaian, Y. Zhou, A. Roy, and Benjamin M Rodriguez," A Pattern Recognition System for JPEG Steganography Detection,"Optics Communications, Vol 285, Issue: 21-22, pp. 4252-4261, 2012.(第一作者)
获得荣誉
- 2025,山东省自然科学奖二等奖,不确定非线性系统的智能自适应协同和优化跟踪控制
- 2024,情感智能基础算法与应用,广东省人工智能产业协会科学技术奖,自然科学奖一等奖
- 2023年度中国自动化学会自然科学奖一等奖,非线性离散系统的智能建模与自适应控制,2024年6月
- 2022,广东省人工智能产业协会科学技术奖,突出贡献奖
- 2018年获 IEEE系统人机控制论的最高学术奖--IEEE 诺伯特·维纳奖(Norbert Wiener Award)
- IEEE Joseph G. Wohl Outstanding Career Award, 2021
- 吴文俊人工智能杰出贡献奖, 2021
- 最佳期刊论文奖:2021 IEEE Transactions on Neural Networks and Learning Systems Outstanding Paper Award (Broad Learning System:An effective and Efficient Incremental Learning System Without the Need for Deep Architecture), 2021.
- 澳门自然科学奖:Macau Natural Science Award(Research on New Discriminative and Generative Learning Methods: Broad Learning System and Generative Fuzzy Networks), 2nd place award, Macau government,October 2020
- Franklin Taylor Best Paper Award(Multi-Kernel Broad Learning System Based on Random Features),October 2019
- 广东省科学进步一等奖,跨域多维电子围网关键技术及应用, 2019
- 最佳期刊论文奖:2017 Transactions on Neural Networks and Learning Systems Outstanding Paper Award(Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-delay Systems using Neural Networks), July 2018
- 澳门自然科学奖:Macau Natural Science Award (Computational Intelligent Systems for Modeling, Decision-Support in Tracking Control and Urban Traffic Assistance), 2nd place award, Macau government, July 2016.
- 澳门自然科学奖:Macau Natural Science Award (Technologies for Feature Analysis and Multimedia Security), 3rd place award, Macau government, July 2014.
- 北京市政府科学技术奖:Science and Technology Award (Regularization: theoretical, methodology, and applications), 3rd place award, Beijing Government, 2012
专利情况
- 陈俊龙,叶梦晴,张通. 基于双空间自适应融合的脑电情感识别方法、介质及设备. 申请号:CN202211161210.X,2022-09-23,授权日期:2023.4.7,授权号:CN115238835B
- 陈俊龙,刘竹琳,贾雪,叶汉云,冯绮颖,张通,一种具有深度结构的增量堆叠式宽度学习系统,202011519673.X,发明专利,2020.12.21,授权日期:2022-4-22,授权号:CN112508192B
- 陈俊龙,李淑贞,张通,一种基于堆叠式宽度学习模型的在线学习芯片,202110238045.2,发明专利,2021.03.04,授权日期:2022-4-22,授权号:CN113052306B
- 陈俊龙,邱际宝,张通. 基于辅助任务的符号音乐情感分类系统及方法[P]. 广东省:CN202210296315.X,2022-03-24,授权日期:2024-05-14,授权号:CN114925742
- 陈俊龙,郭继凤,张通等. 基于Transformer的多视图宽度学习活体检测方法、介质及设备[P]. 广东省:CN116403294A,2023-07-07,授权日期:2023-10-27,授权号:CN116403294
- 陈俊龙,郭继凤,冯绮颖,刘竹琳,张通. 一种基于卷积宽度网络的人脸检测和识别方法,CN202111610869.4,2021-12-27,授权日期:2024-09-17,授权号:CN114373205
- 陈俊龙;黄国彬;孟献兵,一种基于深度学习的逆合成预测方法、装置、介质及设备,2021-11-30,2021114414394,授权日期:2024-11-15,授权号:114220496
- 陈俊龙;詹永康;孟献兵,增量宽度和深度学习的药物反应预测方法、介质和设备,2022104649862,2022-04-29,授权日期:2024-08-02,授权号:114841261
- 陈俊龙;刘如意;孟献兵,基于深度学习的化学反应转化率预测方法、系统及介质,2021114443541,2021-11-30,授权日期:2024-05-14,授权号:114203264
- 郭继凤;陈俊龙;刘竹琳,一种基于增量式自训练框架的半监督宽度学习分类方法,2022102422040,2022-03-11,授权日期:2025-02-18,授权号:114722908